EuPC/JRC Joint Project on NIAS Identification

EuPC: Dario Dainelli, Martin Policar, Geoffroy Tillieux JRC: Sandro Valzacchi, Perihan Yolci Omeroglu, Eddo Hoekstra FCP seminar, Brussels, 20th of April 2018

d.

The European Commission's science and knowledge service

Joint Research Centre

:

y

JRC sites

Headquarters in Brussels and research facilities located in **5 Member States:**

- Belgium (Geel)
- Germany (Karlsruhe)
- Italy (Ispra)
- The Netherlands (Petten)
- Spain (Seville)

Role as EU Reference Laboratory for FCM

EURL-FCM (Joint Research Centre)

- Access to analytical methods and calibrants
- Assess performance of NRLs
 - ✓ Proficiency testing in areas of issues or needs
- > Organisation of training for NRLs, OCLs, etc.
- Scientific/technical advice to EC
 - Anticipatory work
 - ✓ Draft technical guidance documents

Proficiency test migration +

temperature control

JRC VALIDATED METHODS, REFERENCE METHODS AND MEASUREMENTS REPORT

EURL-FCM-02-2016 Proficiency Test Report

Temperature control during migration test and quantification of migrated FCM No 500 by article filling

> E. Tsochatzis, J.F. Alberto Lopes, P. Robouch and E.J. Hoekstra

> > 2018

National Reference Laboratory network

The European Union

Scope of EuPC/JRC project

- Identify IAS and NIASs migrating from common plastic FCM in the EU
 - ✓ Use worst case migration test conditions
 - ✓ Develop in-house libraries both for GC-MS and LC-MS
 - Highlight problems during routine testing
- > Assign scores for NIAS to establish a potential hierarchy of concern
- Develop proposals to address any substances of potential concern

DISCLAIMER

> This work does not represent the position of the European Commission

Samples

- 70 Food contact material from EuPC
 - > 63 different plastic FCM
 - ✓ food packing films
 - (non-)printed
 - trays
 - Bottles and preforms
 - caps
 - ✓ cutlery
 - machine parts that contacts with food
- 5 resins
 - > PP, PS, PET, and other specific polymer)

Monolayers (29)

Multi-layers (35)

- 2 to 10 layers
- > 30 different type of layer composition
- > Layers include OPP, EVA, PVC, PE, PET, EVOH, and specific polymers
- Examples of layer composition
 - ✓ PE/PE/PE
 - ✓ PA/PP
 - ✓ PET/PE/PET
 - ✓ EVOH/PP/PP/PP/PE
 - ✓ EVA/EVA/PETG/R-PET/PETG/PETG
 - VLDPE/VLDPE+EVA/PA/VLDPE+EVA/PVDc/VLDPE+EVA/PVDc/VLDPE+EVA/EVA/ PA/EVA/PET

Selection migration test conditions

> Worst case foreseeable conditions specified by producer Simplifications:

- In case of samples with more than two food simulants
 - ✓ maximum two food simulants for each sample
 - ✓ preference for D2
 - ✓ one aqueous food simulant with higher organic phase
- Food simulant D2 was replaced by isooctane

food simulant A: 20 °C/10 d (5); 40 °C/10 d (7); 60 °C/10 d (22) food simulant C: 20 °C/10 d (1); 40 °C/10 d (4); 100 °C/3 d (1) food simulant D1: 20 °C/10 d (1); 40 °C/10 d (7); 60 °C/10 d (18) Isooctane: 20 °C/10 d (9); 40 °C/10 d (3); 40 °C/2 d (16); 60 °C/10 d (13) food simulant E: 20 °C/10 d (1); 60 °C/10 d (4); 100 °C/1 h (1); 121 °C/2 d (1)

Sample preparation

Petri dishes for rigid multilayer sample (0.14 dm²/1 g; 2 samples)

Pouch for flexible mono/multilayer (1 dm²/25-50 ml; 25 samples)

Immersion for rigid monolayer (1 dm²/100 ml; 21 samples), caps, machine parts, cutlery

Immersion for resins (25 pieces/20 ml; 7 samples)

Filling for trays, bottles (real S/V; 11 samples)

Cell for rigid multilayer (0.5 dm²/60 ml; 4 samples)

Problems during migration test

- Delamination with isooctane (no problem with A and D1) (4x)
 - ✓ Test with D2
- > Evaporation of ethanol and/or isooctane through multilayer (5x)
 - ✓ Monolayers: immersion
 - ✓ Multilayers: food and D2 resp.
- Shrinkage of multilayer in D1 and isooctane (1x)
 - ✓ Test with food
- Precipitation/suspension after 24 h in extract C (1x), D1 (2x) and isooctane (19x)
 - ✓ Filtration of solution
 - ✓ Test with D2
- Boiling with multi-layers
 - ✓ Non-pouchable

11

OR reconsider time-Temperature

Migration solution preparation for analysis

NIAS: Criteria for scoring

Cramer score

Identification of the Cramer Class using in-silico tools (Toxtree, OECD Toolbox)

• Class I: score-5; Class II: score 0; Class III: score +5

Sample score

Occurrence of a NIAS throughout all analysed samples

✓ Score: N of samples in which the NIAS has been identified

Carcinogen score

Segregate potential CMR and assign maximum concern score

• CMR: score 10; Non-CMR: score 0

Peak size

13

- No quantitative analysis
- Only as Small, Medium, High (not used as scoring system)

TOTAL SCORE

Score	<0	0-5	6-10	11-15	16-20	>20	TOTAL
N	28	9	88	12	15	1	154

FREQUENCY OF OCCURRENCE

Frequency	1	2	3-4	5-6	7	>7	TOTAL
Ν	88	20	25	13	2	6	154

Next steps

- Focus on score >12 for further investigation
- ➤ Clarify mechanism of high occurrence ≥7
- Risk Assessment based on Matrix Exposure tool,
 - priority to substances exceeding a score threshold
- Pilot Risk Assessment [Scheme]
- Quantification
- Development of multi-analyte methods for covering all substance categories
- In-house library-building is necessary

Stay in touch

EU Science Hub: ec.europa.eu/jrc

Twitter: @EU_ScienceHub

Facebook: EU Science Hub - Joint Research Centre

LinkedIn: Joint Research Centre

YouTube: EU Science Hub

